4.7 Article

Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice

Journal

JOURNAL OF EXPERIMENTAL MEDICINE
Volume 209, Issue 13, Pages 2485-2499

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20121015

Keywords

-

Funding

  1. ETH Zurich
  2. Swiss National Science Foundation [310030-113947]

Ask authors/readers for more resources

The inhibitory programmed death 1 (PD-1)-programmed death ligand 1 (PD-L1) pathway contributes to the functional down-regulation of T cell responses during persistent systemic and local virus infections. The blockade of PD-1-PD-L1-mediated inhibition is considered as a therapeutic approach to reinvigorate antiviral T cell responses. Yet previous studies reported that PD-L1-deficient mice develop fatal pathology during early systemic lymphocytic choriomeningitis virus (LCMV) infection, suggesting a host protective role of T cell down-regulation. As the exact mechanisms of pathology development remained unclear, we set out to delineate in detail the underlying pathogenesis. Mice deficient in PD-1-PD-L1 signaling or lacking PD-1 signaling in CD8 T cells succumbed to fatal CD8 T cell-mediated immunopathology early after systemic LCMV infection. In the absence of regulation via PD-1, CD8 T cells killed infected vascular endothelial cells via perforin-mediated cytolysis, thereby severely compromising vascular integrity. This resulted in systemic vascular leakage and a consequential collapse of the circulatory system. Our results indicate that the PD-1-PD-L1 pathway protects the vascular system from severe CD8 T cell-mediated damage during early systemic LCMV infection, highlighting a pivotal physiological role of T cell down-regulation and suggesting the potential development of immunopathological side effects when interfering with the PD-1-PD-L1 pathway during systemic virus infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available