4.7 Article

Dendritic cells induce antigen-specific regulatory T cells that prevent graft versus host disease and persist in mice

Journal

JOURNAL OF EXPERIMENTAL MEDICINE
Volume 208, Issue 12, Pages 2489-2496

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20110466

Keywords

-

Funding

  1. New York State Department of Health Contract [C023046]
  2. National Institute of Allergy and Infectious Diseases [AI051573]

Ask authors/readers for more resources

Foxp3(+) regulatory T cells (T reg cells) effectively suppress immunity, but it is not determined if antigen-induced T reg cells (iT reg cells) are able to persist under conditions of inflammation and to stably express the transcription factor Foxp3. We used spleen cells to stimulate the mixed leukocyte reaction (MLR) in the presence of transforming growth factor beta (TGF-beta) and retinoic acid. We found that the CD11c(high) dendritic cell fraction was the most potent at inducing high numbers of alloreactive Foxp3(+) cells. The induced CD4(+)CD25(+)Foxp3(+) cells appeared after extensive proliferation. When purified from the MLR, iT reg cells suppressed both primary and secondary MLR in vitro in an antigen-specific manner. After transfer into allogeneic mice, iT reg cells persisted for 6 mo and prevented graft versus host disease (GVHD) caused by co-transferred CD45RB(hi) T cells. Similar findings were made when iT reg cells were transferred after onset of GVHD. The CNS2 intronic sequence of the Foxp3 gene in the persisting iT reg cells was as demethylated as the corresponding sequence of naturally occurring T reg cells. These results indicate that induced Foxp3(+) T reg cells, after proliferating and differentiating into antigen-specific suppressive T cells, can persist for long periods while suppressing a powerful inflammatory disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available