4.7 Article

Pre-B cell receptor-mediated cell cycle arrest in Philadelphia chromosome-positive acute lymphoblastic leukemia requires IKAROS function

Journal

JOURNAL OF EXPERIMENTAL MEDICINE
Volume 206, Issue 8, Pages 1739-1753

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20090004

Keywords

-

Funding

  1. Alex's Lemonade Stand Foundation
  2. National Institutes of Health [R01CA090321, R01CA137060, R01CA139032, T32 CA009659-16]

Ask authors/readers for more resources

B cell lineage acute lymphoblastic leukemia (ALL) arises in virtually all cases from B cell precursors that are arrested at pre-B cell receptor-dependent stages. The Philadelphia chromosome-positive (Ph+) subtype of ALL accounts for 25-30% of cases of adult ALL, has the most unfavorable clinical outcome among all ALL subtypes and is defined by the oncogenic BCR-ABL1 kinase and deletions of the IKAROS gene in >80% of cases. Here, we demonstrate that the pre-B cell receptor functions as a tumor suppressor upstream of IKAROS through induction of cell cycle arrest in Ph+ ALL cells. Pre-B cell receptor-mediated cell cycle arrest in Ph+ ALL cells critically depends on IKAROS function, and is reversed by coexpression of the dominant-negative IKAROS splice variant IK6. IKAROS also promotes tumor suppression through cooperation with downstream molecules of the pre-B cell receptor signaling pathway, even if expression of the pre-B cell receptor itself is compromised. In this case, IKAROS redirects oncogenic BCR-ABL1 tyrosine kinase signaling from SRC kinase-activation to SLP65, which functions as a critical tumor suppressor downstream of the pre-B cell receptor. These findings provide a rationale for the surprisingly high frequency of IKAROS deletions in Ph+ ALL and identify IKAROS-mediated cell cycle exit as the endpoint of an emerging pathway of pre-B cell receptor-mediated tumor suppression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available