4.7 Article

Mitogen-activated protein kinase 6 regulates NPR1 gene expression and activation during leaf senescence induced by salicylic acid

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 65, Issue 22, Pages 6513-6528

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/eru369

Keywords

Arabidopsis; NPR1; MPK6; salicylic acid; senescence; Trx h5; WRKY6

Categories

Funding

  1. Programs for Changjiang Scholars and Innovative Research Team in University [IRT0829]
  2. Key Program of NSFC-Guangdong Joint Funds of China [U0931005]
  3. National High Technology Research and Development Program of China (863 Program) [2007AA10Z204]

Ask authors/readers for more resources

Plant senescence is a highly regulated process that can be induced by a range of factors. The nonexpressor of pathogenesis-related genes 1 (npr1) mutant is defective in the salicylic acid (SA) signalling pathway, displaying delayed yellowing during developmental senescence. However, the regulating mechanism of NPR1 on exogenous SA-induced senescence in detached Arabidopsis leaves has not yet been clarified. It was shown here that mitogen-activated protein kinase 6 (MPK6) is involved in promoting exogenous SA-induced detached leaf senescence. During the process of SA-induced senescence, the expression of NPR1 and senescence-related transcription factor WRKY6 was suppressed in mpk6 mutant plants. Further analyses showed that the NPR1 mRNA level is reduced in wrky6 mutants and enhanced in WRKY6 overexpressing lines. Meanwhile, chromatin immunoprecipitation experiments revealed that WRKY6 binds directly to the NPR1 promoter containing W-box motifs. Moreover, inhibition of MPK6 function diminished SA-induced monomerization and nuclear localization of NPR1. In addition, the expression of Trx h5, which catalyses the SA-induced NPR1 activation, was suppressed in the mpk6 mutant, suggesting that MPK6 promotes NPR1 activation, possibly by regulating the expression of Trx h5. Collectively, MPK6-mediated WRKY6 and Trx h5 transcriptional activation co-regulated the expression of the NPR1 gene and the monomerization of NPR1 protein, allowing it to enter the nucleus, thereby promoting SA-induced leaf senescence. These results provide new insight into the mechanism of exogenous SA-induced detached leaf senescence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available