4.7 Article

Transcriptional and physiological changes in the S assimilation pathway due to single or combined S and Fe deprivation in durum wheat (Triticum durum L.) seedlings

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 64, Issue 6, Pages 1663-1675

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/ert027

Keywords

Iron; Strategy II; sulphate assimilation; sulphate transporter; sulphur; wheat

Categories

Funding

  1. Italian M.I.U.R.-PRIN
  2. MAPPA5A project (CRA-MIPAAF) [DM 7398/7303/2008]

Ask authors/readers for more resources

The effect of iron (Fe) and sulphur (S) deprivation on sulphate uptake and assimilation pathways was investigated in durum wheat by analysing the expression of genes coding for major transporters and enzymes involved in sulphate assimilation and reduction: high-affinity sulphate transporters (TdSultr1.1 and TdSultr1.3), ATP sulphurylase (TdATPSul1 and TdATPSul2), APS reductase (TdAPR), sulphite reductase (TdSiR), O-acetylserine(thiol)lyase (TdOASTL1 and TdOASTL2), and serine acetyltransferase (TdSAT1 and TdSAT2). Further experiments were carried out to detect changes in the activities of these enzymes, together with the evaluation of growth parameters (fresh biomass accumulation, leaf green values, and total S, thiol, and Fe concentrations). Fe shortage in wheat plants under adequate S nutrition resulted in an S deficiency-like response. Most of the genes of the S assimilatory pathway induced by S deprivation (TdATPSul1, TdAPR, TdSir, TdSAT1, and TdSAT2) were also significantly up-regulated after the imposition of the Fe limitation under S-sufficient conditions. However, the differential expression of genes encoding the two high-affinity transporters (TdSultr1.1 and TdSultr1.3) indicates that the mechanisms of sulphate uptake regulation under Fe and S deficiency are different in wheat. Moreover, it was observed that the mRNA level of genes encoding ATPS, APR, and OASTL and the corresponding enzyme activities were often uncoupled in response to Fe and S availability, indicating that most probably their regulation involves a complex interplay of transcriptional, translational, and/or post-translational mechanisms induced by S and/or Fe deficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available