4.7 Article

Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 63, Issue 7, Pages 2411-2420

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/err359

Keywords

Apoplastic fluid; cell walls; cucumber (Cucumis sativus L; ); hydroxyl radicals; leaves; manganese toxicity; peroxidase; silicon

Categories

Funding

  1. Serbian Ministry of Education and Science [ON 173028, ON 173040]

Ask authors/readers for more resources

This work was focused on the role of silicon (Si) in amelioration of manganese (Mn) toxicity caused by elevated production of hydroxyl radicals (center dot OH) in the leaf apoplast of cucumber (Cucumis sativus L.). The plants were grown in nutrient solutions with adequate (0.5 mu M) or excessive (100 mu M) Mn concentrations with or without Si being supplied. The symptoms of Mn toxicity were absent in the leaves of Si-treated plants subjected to excess Mn, although the leaf Mn concentration remained extremely high. The apoplastic concentration of free Mn2+ and H2O2 of high Mn-treated plants was significantly decreased by Si treatment. Si supply suppressed the Mn-induced increased abundance of peroxidase (POD) isoforms in the leaf apoplastic fluid, and led to a rapid suppression of guaiacol-POD activity under excess Mn. The spin-trapping reagent 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide was used to detect center dot OH by electron paramagnetic resonance spectroscopy. Although supplying Si markedly decreased the accumulation of center dot OH in the leaf apoplast with excess Mn, adding monosilicic acid to the Mn2+/H2O2 reaction mixture did not directly affect the Fenton reaction in vitro. The results indicate that Si contributes indirectly to a decrease in center dot OH in the leaf apoplast by decreasing the free apoplastic Mn2+, thus regulating the Fenton reaction. A direct inhibitory effect of Si on guaiacol-POD activity (demonstrated in vitro) may also contribute to decreasing the POD-mediated generation of center dot OH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available