4.7 Article

-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 63, Issue 13, Pages 4849-4860

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/ers164

Keywords

Abscisic acid; -aminobutyric acid; desiccation resistance; non-hydraulic signals; reactive oxygen species; transpiration efficiency for grain; Triticum aestivum L; water use efficiency for grain

Categories

Funding

  1. National Nature Science Foundation of China [30625025]
  2. '111' programme [B07051]
  3. Ministry of Education of China
  4. UWA Institute of Agriculture
  5. Centre for Legumes in Mediterranean Agriculture at the University of Western Australia

Ask authors/readers for more resources

A pot experiment was conducted to investigate the effect of the non-protein amino acid, -aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 M BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential () used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available