4.7 Article

The Arabidopsis sn-1-specific mitochondrial acylhydrolase AtDLAH is positively correlated with seed viability

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 62, Issue 15, Pages 5683-5698

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/err250

Keywords

DAD1-like acylhydrolase; lipid peroxidation; mitochondrial targeting; seed viability

Categories

Funding

  1. Technology Development Program for Agriculture and Forestry
  2. Ministry for Agriculture, Forestry and Fisheries, Republic of Korea [309017-5]
  3. National Research Foundation
  4. Ministry of Education, Science, and Technology, Republic of Korea [2009-0078317]
  5. National Center for GM Crops
  6. Rural Development Administration, Republic of Korea [PJ008152]

Ask authors/readers for more resources

Lipid-derived molecules produced by acylhydrolases play important roles in the regulation of diverse cellular functions in plants. In Arabidopsis, the DAD1-like phospholipase A1 family consists of 12 members, all of which possess a lipase 3 domain. In this study, the biochemical and cellular functions of AtDLAH, an Arabidopsis thaliana DAD1-like acylhydrolase, were examined. Bacterially expressed AtDLAH contained phospholipase A1 activity for catalysing the hydrolysis of phospholipids at the sn-1 position. However, AtDLAH displayed an even stronger preference for 1-lysophosphatidylcholine, 1-monodiacylglycerol, and phosphatidic acid, suggesting that AtDLAH is a sn-1-specific acylhydrolase. The AtDLAH gene was highly expressed in young seedlings, and its encoded protein was exclusively localized to the mitochondria. AtDLAH-overexpressing transgenic seeds (35S:AtDLAH) were markedly tolerant to accelerated-ageing treatment and thus had higher germination percentages than wild-type seeds. In contrast, the atdlah loss-of-function knockout mutant seeds were hypersusceptible to accelerated-ageing conditions. The 35S: AtDLAH seeds, as opposed to the atdlah seeds, exhibited a dark red staining pattern following tetrazolium treatment under both normal and accelerated-ageing conditions, suggesting that AtDLAH expression is positively correlated with seed viability. The enhanced viability of 35S: AtDLAH seeds was accompanied by more densely populated epidermal cells, lower levels of accumulated lipid hydroperoxides, and higher levels of polar lipids as compared with wild-type and atdlah mutant seeds. These results suggest that AtDLAH, a mitochondrial-localized sn-1-specific acylhydrolase, plays an important role in Arabidopsis seed viability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available