4.7 Article

Relationship between ultrasonic properties and structural changes in the mesophyll during leaf dehydration

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 62, Issue 10, Pages 3637-3645

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/err065

Keywords

Cell wall elasticity; leaf thickness; relative water content; turgor loss point; ultrasonic spectroscopy; water potential

Categories

Funding

  1. INIA (Ministerio de Ciencia e Innovacion) [SUM2008-00004-C03-03]
  2. Gobierno de Aragon [A54]
  3. 'Juan de la Cierva'-MICIIN

Ask authors/readers for more resources

The broad-band ultrasonic spectroscopy technique allows the determination of changes in the relative water content (RWC) of leaves with contrasting structural features. Specifically, the standardized frequency associated with the maximum transmittance (f/f(o)) is strongly related to the RWC. This relationship is characterized by the existence of two phases separated by an inflexion point (associated with the turgor loss point). To obtain a better understanding of the strong relationship found between RWC and f/f(o), this work has studied the structural changes experienced by Quercus muehlenbergii leaves during dehydration in terms of ultrasounds measurements, cell wall elasticity, leaf thickness, leaf density, and leaf structure. The results suggest that the decrease found in f/f(o) before the turgor loss point can be attributed to the occurrence of changes in the estimation of the macroscopic effective elastic constant of the leaf (c(33)), mainly associated with changes in the bulk modulus of elasticity of the cell wall (epsilon). These changes are overriding or compensating for the thickness decreases recorded during this phase. On the other hand, the high degree of cell shrinkage and stretching found in the mesophyll cells during the second phase seem to explain the changes in the acoustic properties of the leaf beyond the turgor loss point. The formation of large intercellular spaces, which increased the irregularity in the acoustic pathway, may explain the increase of the attenuation coefficient of ultrasounds once the turgor loss point threshold is exceeded. The direct measurement of c(33) from ultrasonic measurements would allow a better knowledge of the overall biomechanical properties of the leaf further than those derived from the P-V analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available