4.7 Review

Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 61, Issue 8, Pages 2145-2155

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erq077

Keywords

Drought; hydraulics; hydrology; modelling root system architecture

Categories

Funding

  1. Inter-University Attraction Pole Programme - Belgian Science Policy (PAI)
  2. Communaute Francaise de Belgique - Actions de Recherches Concertees (ARC)

Ask authors/readers for more resources

Due in part to recent progress in root genetics and genomics, increasing attention is being devoted to root system architecture (RSA) for the improvement of drought tolerance. The focus is generally set on deep roots, expected to improve access to soil water resources during water deficit episodes. Surprisingly, our quantitative understanding of the role of RSA in the uptake of soil water remains extremely limited, which is mainly due to the inherent complexity of the soil-plant continuum. Evidently, there is a need for plant biologists and hydrologists to develop together their understanding of water movement in the soil-plant system. Using recent quantitative models coupling the hydraulic behaviour of soil and roots in an explicit 3D framework, this paper illustrates that the contribution of RSA to root water uptake is hardly separable from the hydraulic properties of the roots and of the soil. It is also argued that the traditional view that either the plant or the soil should be dominating the patterns of water extraction is not generally appropriate for crops growing with a sub-optimal water supply. Hopefully, in silico experiments using this type of model will help explore how water fluxes driven by soil and plant processes affect soil water availability and uptake throughout a growth cycle and will embed the study of RSA within the domains of root hydraulic architecture and sub-surface hydrology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available