4.7 Article

Mechanistic study of mitochondria-dependent programmed cell death induced by aluminium phytotoxicity using fluorescence techniques

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 62, Issue 1, Pages 331-343

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erq279

Keywords

Alternative oxidase; aluminium; Arabidopsis; caspase-3-like; fluorescence techniques; mitochondria; programmed cell death; reactive oxygen species; respiratory chain

Categories

Funding

  1. Programme for Changjiang Scholars and the Innovative Research Team in the University [IRT0829]
  2. National High Technology Research and Development Programme of China (863 Programme) [2007AA10Z204]

Ask authors/readers for more resources

Recent studies have suggested that aluminium (Al) induces programmed cell death (PCD) in plants. To investigate possible mechanisms, fluorescence techniques were used to monitor the behaviour of mitochondria in vivo, as well as the activation of caspase-3-like activity during protoplast PCD induced by Al. A quick burst of mitochondrial reactive oxygen species (ROS) was detected in Al-treated protoplasts. The mitochondrial swelling and mitochondrial transmembrane potential (MTP) loss occurred prior to cell death. Pre-incubation with ascorbic acid (AsA, antioxidant molecule) retarded mitochondrial swelling and MTP loss. The real-time detection of caspase-3-like activation was achieved by measuring the degree of fluorescence resonance energy transfer (FRET). At 30 min after exposure to Al, caspase-3-like protease activation, indicated by the decrease in the FRET ratio, occurred, taking about 1 h to reach completion in single living protoplasts. The mitochondrial permeability transition pore (MPTP) inhibitor, cyclosporine (CsA) gave significant protection against MTP loss and subsequent caspase-3-like activation. Our data also showed that Al-induced mitochondrial ROS possibly originated from complex I and III damage in the respiratory chain through the interaction between Al and iron-sulphur (Fe-S) protein. Alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, was demonstrated to play protective roles in Al-induced protoplast death. Our results showed that mitochondrial swelling and MTP loss, as well as the generation of mitochondrial ROS play important roles in Al-induced caspase-3-like activation and PCD, which provided new insight into the signalling cascades that modulate Al phytotoxicity mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available