4.7 Article

Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE: the pepper orthologue of SELF PRUNING

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 60, Issue 3, Pages 869-880

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/ern334

Keywords

FASCICULATE; flowering time; pepper; plant architecture; SELF PRUNING; sympodial development

Categories

Funding

  1. The Israel Science Foundation [687/05]

Ask authors/readers for more resources

Wild peppers (Capsicum spp.) are either annual or perennial in their native habitat and their shoot architecture is dictated by their sympodial growth habit. To study shoot architecture in pepper, sympodial development is described in wild type and in the classical recessive fasciculate (fa) mutation. The basic sympodial unit in wild-type pepper comprises two leaves and a single terminal flower. fasciculate plants are characterized by the formation of floral clusters separated by short internodes and miniature leaves and by early flowering. Developmental analysis of these clusters revealed shorter sympodial units and, often, precocious termination prior to sympodial leaf formation. fa was mapped to pepper chromosome 6, in a region corresponding to the tomato SELF-PRUNING (SP) locus, the homologue of TFL1 of Arabidopsis. Sequence comparison between wild-type and fa plants revealed a duplication of the second exon in the mutants' orthologue of SP, leading to the formation of a premature stop codon. Ectopic expression of FASCICULATE complemented the Arabidopsis tfl1 mutant plants and as expected, stimulated late flowering. In agreement with the major effect of FASCICULATE imposed on sympodial development, the gene transcripts were localized to the centre of sympodial shoots but could not be detected in the primary shoot. The wide range of pleiotropic effects on plant architecture mediated by a single 'flowering' gene, suggests that it is used to co-ordinate many developmental events, and thus may underlie some of the widespread variation in the Solanaceae shoot architecture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available