4.7 Article

The 'trade-off' between synthesis of primary and secondary compounds in young tomato leaves is altered by nitrate nutrition: experimental evidence and model consistency

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 60, Issue 15, Pages 4301-4314

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erp271

Keywords

Growth-differentiation balance hypothesis (GDBH); leaf composition; major phenolics (chlorogenic acid; rutin and kaempferol-rutinoside); model; nitrate limitation; primary C compounds; Solanum lycopersicum L; (formerlyly Lycopersicon esculentum Mill; tomato)

Categories

Ask authors/readers for more resources

Plants allocate internal resources to fulfil essential, yet possibly conflicting, demands such as defence or growth, as hypothesized by the 'growth-differentiation balance theory' (GDB). This trade-off was examined in young tomato plants grown for 25 d using the nutrient film technique with seven nitrate concentrations ([NO3]). The modification of primary (growth-related: organic acids, carbohydrates) and secondary (defence-related: phenolics) metabolite concentrations in leaves was assessed. Then a simple model was devised to simulate the trade-off between growth and secondary metabolism in response to N nutrition. N affected growth and metabolite concentrations in the leaves. Dry biomass, leaf area, and concentrations of nitrate and organic acid (malic, citric) increased with rising [NO3], up to a threshold, above which they remained constant. Starch, sucrose, and organic N concentrations were invariant with [NO3]. Glucose, fructose, and phenolic (chlorogenic acid, rutin, and kaempferol-rutinoside) concentrations were highest at lowest [NO3]. They declined progressively with rising [NO3] until a threshold, above which they remained constant. Model predictions are in phase with experimental phenolic concentration data although the simulated metabolic rates differ from the GDBH proposals depicted in the literature. From the model output it is shown that a careful definition of the C reserve compounds is required.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available