4.7 Article

Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 59, Issue 6, Pages 1409-1418

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/ern048

Keywords

astaxanthin; carotenoid; Haematococcus pluvialis; NaCl; nutrient stress; sodium acetate

Categories

Ask authors/readers for more resources

Haematococcus pluvialis, a green alga, accumulates carotenoids, predominantly astaxanthin, when exposed to stress conditions. In the present work, changes in the pigment profile and expression of carotenogenic genes under various nutrient stress conditions and their regulation were studied. Nutrient stress and higher light intensity in combination with NaCl/sodium acetate (SA) enhanced total carotenoid and total astaxanthin content to 32.0 and 24.5 mg g(-1) of dry biomass, respectively. Expression of carotenogenic genes, phytoene synthase (PSY), phytoene desaturase (PDS), lycopene cyclase (LCY), beta-carotene ketolase (BKT), and beta-carotene hydroxylase (CHY) were up-regulated under all the stress conditions studied. However, the extent of expression of carotenogenic genes varied with stress conditions. Nutrient stress and high light intensity induced expression of astaxanthin biosynthetic genes, BKT and CHY, transiently. Enhanced expression of these genes was observed with SA and NaCl/SA, while expression was delayed with NaCl. The maximum content of astaxanthin recorded in cells grown in medium with SA and NaCl/SA correlated with the expression profile of the astaxanthin biosynthetic genes. Studies using various inhibitors indicated that general carotenogenesis and secondary carotenoid induction were regulated at both the transcriptional and the cytoplasmic translational levels. The induction of general carotenoid synthesis genes was independent of cytoplasmic protein synthesis while BKT gene expression was dependent on de novo protein synthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available