4.5 Article

An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 217, Issue 3, Pages 331-336

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.092767

Keywords

Swimming; Flying; Wakes; Feeding; Particle image velocimetry

Categories

Funding

  1. Office of Naval Research [N000140810918, N000141010137]
  2. Division Of Ocean Sciences
  3. Directorate For Geosciences [1061353] Funding Source: National Science Foundation

Ask authors/readers for more resources

We describe and characterize a method for estimating the pressure field corresponding to velocity field measurements such as those obtained by using particle image velocimetry. The pressure gradient is estimated from a time series of velocity fields for unsteady calculations or from a single velocity field for quasi-steady calculations. The corresponding pressure field is determined based on median polling of several integration paths through the pressure gradient field in order to reduce the effect of measurement errors that accumulate along individual integration paths. Integration paths are restricted to the nodes of the measured velocity field, thereby eliminating the need for measurement interpolation during this step and significantly reducing the computational cost of the algorithm relative to previous approaches. The method is validated by using numerically simulated flow past a stationary, two-dimensional bluff body and a computational model of a three-dimensional, self-propelled anguilliform swimmer to study the effects of spatial and temporal resolution, domain size, signal-to-noise ratio and out-of-plane effects. Particle image velocimetry measurements of a freely swimming jellyfish medusa and a freely swimming lamprey are analyzed using the method to demonstrate the efficacy of the approach when applied to empirical data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available