4.5 Article

Wired to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the 'runner's high'

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 215, Issue 8, Pages 1331-1336

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.063677

Keywords

AEA; 2-AG; positive affect; running; walking; locomotion; Homo; exercise; endogenous cannabinoid

Categories

Funding

  1. National Science Foundation [BCS 0820270]
  2. Wenner Gren Foundation
  3. Direct For Social, Behav & Economic Scie
  4. Division Of Behavioral and Cognitive Sci [0820270] Funding Source: National Science Foundation

Ask authors/readers for more resources

Humans report a wide range of neurobiological rewards following moderate and intense aerobic activity, popularly referred to as the 'runner's high', which may function to encourage habitual aerobic exercise. Endocannabinoids (eCBs) are endogenous neurotransmitters that appear to play a major role in generating these rewards by activating cannabinoid receptors in brain reward regions during and after exercise. Other species also regularly engage in endurance exercise (cursorial mammals), and as humans share many morphological traits with these taxa, it is possible that exercise-induced eCB signaling motivates habitual high-intensity locomotor behaviors in cursorial mammals. If true, then neurobiological rewards may explain variation in habitual locomotor activity and performance across mammals. We measured circulating eCBs in humans, dogs (a cursorial mammal) and ferrets (a non-cursorial mammal) before and after treadmill exercise to test the hypothesis that neurobiological rewards are linked to high-intensity exercise in cursorial mammals. We show that humans and dogs share significantly increased exercise-induced eCB signaling following high-intensity endurance running. eCB signaling does not significantly increase following low-intensity walking in these taxa, and eCB signaling does not significantly increase in the non-cursorial ferrets following exercise at any intensity. This study provides the first evidence that inter-specific variation in neurotransmitter signaling may explain differences in locomotor behavior among mammals. Thus, a neurobiological reward for endurance exercise may explain why humans and other cursorial mammals habitually engage in aerobic exercise despite the higher associated energy costs and injury risks, and why non-cursorial mammals avoid such locomotor behaviors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available