4.5 Article

The mechanical function of linked muscles in the guinea fowl hind limb

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 213, Issue 13, Pages 2201-2208

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.038406

Keywords

avian; biomechanics; limb; locomotion; muscle

Categories

Funding

  1. NIH [AR47337]

Ask authors/readers for more resources

Although mechanical linkages between the proximal and distal limb are present in a range of species, their functional significance is unknown. We have investigated the mechanical function of the flexor cruris lateralis pars pelvica (FCLP), flexor cruris lateralis pars accessoria (FCLA) and gastrocnemius intermedia (GI), a system of linked muscles spanning proximal and distal limb segments in the guinea fowl (Numida meleagris) hind limb. The FCLP, which is in the anatomical position of a hamstring muscle, is the primary component of the linkage. It is connected to the distal femur via the FCLA, the tarsometatarsus via the tendon of insertion of the GI and the common Achilles tendon, and the tibiotarsus via a distal tendon of insertion. The FCLP may, therefore, potentially exert moments at the hip, knee and ankle joints depending on the joint angles and the relative states of activation in the three muscles. Evidence presented here suggests that the GI and FCLA act as actively controlled links that alter distal action of the FCLP. The FCLP and GI are coactive in the late swing and early stance phases of the stride, forming a triarticular complex, and likely act together to resist and control ankle flexion immediately after foot-down in addition to providing hip extension and knee flexion moments. The FCLP and FCLA are coactive from mid-through to late stance, acting together as a uniarticular hip extensor. Available evidence suggests that this role of the FCLP and FCLA is of increased importance in inclined running and accelerations. This linkage between a proximal muscle and alternate distal connections allows for functional flexibility, both in terms of the site at which the muscle exerts force and the nature of the muscle's mechanical function. The interactions generated between the proximal and distal limb by linkages of this type suggest that less emphasis should be placed on the distinct functional roles of specific anatomical classes of muscle within proximal and distal limb segments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available