4.5 Article

Biofluiddynamic scaling of flapping, spinning and translating fins and wings

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 212, Issue 16, Pages 2691-2704

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.022251

Keywords

fly; flight; swimming; wing; fin; scaling; biofluiddynamics; Navier-Stokes; dimensionless numbers

Categories

Funding

  1. NWO-ALW [817.02.012]
  2. NSF [IBN-0217229]

Ask authors/readers for more resources

Organisms that swim or fly with fins or wings physically interact with the surrounding water and air. The interactions are governed by the morphology and kinematics of the locomotory system that form boundary conditions to the Navier-Stokes (NS) equations. These equations represent Newton's law of motion for the fluid surrounding the organism. Several dimensionless numbers, such as the Reynolds number and Strouhal number, measure the influence of morphology and kinematics on the fluid dynamics of swimming and flight. There exists, however, no coherent theoretical framework that shows how such dimensionless numbers of organisms are linked to the NS equation. Here we present an integrated approach to scale the biological fluid dynamics of a wing that flaps, spins or translates. Both the morphology and kinematics of the locomotory system are coupled to the NS equation through which we find dimensionless numbers that represent rotational accelerations in the flow due to wing kinematics and morphology. The three corresponding dimensionless numbers are (1) the angular acceleration number, (2) the centripetal acceleration number, and (3) the Rossby number, which measures Coriolis acceleration. These dimensionless numbers consist of length scale ratios, which facilitate their geometric interpretation. This approach gives fundamental insight into the physical mechanisms that explain the differences in performance among flapping, spinning and translating wings. Although we derived this new framework for the special case of a model fly wing, the method is general enough to make it applicable to other organisms that fly or swim using wings or fins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available