4.5 Article

Freeze tolerance in an arctic Alaska stonefly

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 212, Issue 2, Pages 305-312

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.020701

Keywords

insect; freeze tolerance; antifreeze protein; stonefly; aquatic nymph; glycerol

Categories

Funding

  1. National Science Foundation [OPP-0117104, IOS-0618342]
  2. Richard Baumann at Brigham Young University, UT, USA

Ask authors/readers for more resources

Most aquatic insects do not survive subzero temperatures and, for those that do, the physiology has not been well characterized. Nemoura arctica is a species of stonefly widely distributed throughout arctic and subarctic Alaska. We collected nymphs from the headwaters of the Chandalar River, where we recorded streambed temperatures as low as -12.7 degrees C in midwinter. When in contact with ice, autumn-collected N. arctica cool to -1.5 +/- 0.4 degrees C before freezing, but individuals survived temperatures as low as -15 degrees C, making this the first described species of freeze-tolerant stonefly. N. arctica clearly survive freezing in nature, as winter-collected nymphs encased in ice demonstrated high survivorship when thawed. In the laboratory, 87% of N. arctica nymphs frozen to -15 degrees C for 2.5 weeks survived and, within one month of thawing, 95% of the last-instar nymphs emerged. N. arctica produce both glycerol and ice-binding factors (e. g. antifreeze protein) in response to low temperature. Hemolymph glycerol concentrations increased from 3 mmol l(-1) to 930 +/- 114 mmol l(-1) when temperatures were decreased from 4 degrees C to -8 degrees C, and N. arctica continued to produce glycerol even while frozen. Although the hemolymph of individual cold-acclimated nymphs occasionally exhibited more than a degree of thermal hysteresis, typically the hemolymph exhibited only hexagonal crystal growth, indicating a low concentration of ice-binding factor. Hemolymph of nymphs acclimated to subzero temperatures had recrystallization inhibition. These results demonstrate that, in the face of freezing conditions, N. arctica exhibit overwintering adaptations similar to those of terrestrial insects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available