4.5 Article

A plant toxin mediated mechanism for the lag in snowshoe hare population recovery following cyclic declines

Journal

OIKOS
Volume 124, Issue 6, Pages 796-805

Publisher

WILEY
DOI: 10.1111/oik.01671

Keywords

-

Categories

Funding

  1. USGS's Greater Everglades Priority Ecosystem Science research program

Ask authors/readers for more resources

A necessary condition for a snowshoe hare population to cycle is reduced reproduction after the population declines. But the cause of a cyclic snowshoe hare population's reduced reproduction during the low phase of the cycle, when predator density collapses, is not completely understood. We propose that moderate-severe browsing by snowshoe hares upon preferred winter-foods could increase the toxicity of some of the hare's best winter-foods during the following hare low, with the result being a decline in hare nutrition that could reduce hare reproduction. We used a combination of modeling and experiments to explore this hypothesis. Using the shrub birch Betula glandulosa as the plant of interest, the model predicted that browsing by hares during a hare cycle peak, by increasing the toxicity B. glandulosa twigs during the following hare low, could cause a hare population to cycle. The model's assumptions were verified with assays of dammarane triterpenes in segments of B. glandulosa twigs and captive hare feeding experiments conducted in Alaska during February and March 1986. The model's predictions were tested with estimates of hare density and measurements of B. glandulosa twig growth made at Kluane, Yukon from 1988-2008. The empirical tests supported the model's predictions. Thus, we have concluded that a browsing-caused increase in twig toxicity that occurs during the hare cycle's low phase could reduce hare reproduction during the low phase of the hare cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available