4.5 Article

An integrated population model for a long-lived ungulate: more efficient data use with Bayesian methods

Journal

OIKOS
Volume 124, Issue 6, Pages 806-816

Publisher

WILEY-BLACKWELL
DOI: 10.1111/oik.01924

Keywords

-

Categories

Funding

  1. Norwegian Research Council (NORKLIMA) [178561/S30]
  2. Norwegian Research Council (POLAR-PROG) [216051]
  3. Norwegian Research Council (SFF-III) [223257/F50]
  4. Norwegian University of Science and Technology
  5. European Research Council [ERC-2010-AdG 268562]
  6. Norwegian Research Council
  7. UK Natural Environment Research Council
  8. Macaulay Development Trust
  9. Norwegian Institute for Nature Research, Centre for Ecology and Hydrology, UNIS
  10. James Hutton Institute (Macaulay Institute)
  11. Norwegian School of Veterinary Science
  12. Amundsen Foundation
  13. Arctic Field Grant

Ask authors/readers for more resources

We develop an integrated population model for Svalbard reindeer Rangifer tarandus platyrhynchus, and demonstrate how this type of model can be used to extract more information from the data and separate different sources of variability in population estimates. Our model combines individual mark-recapture data with population counts and harvesting data within a Bayesian model framework, and accounts for observation error, environmental and demographic stochasticity, and age structure. From this model we obtain annual estimates of age-specific population size, survival and fecundity. The model provides estimates of age structure at a finer scale than that found in the census data, and enables us to estimate survival for the period before calves are first caught and marked, i.e. before they enter the individual mark-recapture data. The modeling framework provides an improved approach to studying age-structured populations that are imperfectly censused and where the demography of only a sample of individuals is known. We use data from independent censuses of the same population to evaluate population estimates obtained from the model, and show that it is successful at correcting for different types of observation error. Based on our model results, we suggest that allocating resources to the collection of supplementary mark-recapture data could improve the reliability of population projections more than making regular population censuses as exhaustive as possible. Our work demonstrates how integrated Bayesian population modeling can be used to increase the amount of information extracted from collections of data, identifying and disentangling sources of variation in individual performance and population size. This represents an important step towards increasing the predictive ability of population growth models for long-lived species experiencing changes in environmental conditions and harvesting regimes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available