4.2 Article

Selection in a fluctuating environment leads to decreased genetic variation and facilitates the evolution of phenotypic plasticity

Journal

JOURNAL OF EVOLUTIONARY BIOLOGY
Volume 25, Issue 7, Pages 1275-1290

Publisher

WILEY
DOI: 10.1111/j.1420-9101.2012.02512.x

Keywords

canalization; environmental change; environmental sensitivity; experimental evolution; fluctuating temperature; gene by environment interaction; genetic correlation; genetic variation; insects; phenotypic plasticity

Funding

  1. Formas (Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning)

Ask authors/readers for more resources

Changes in the environment are expected to induce changes in the quantitative genetic variation, which influences the ability of a population to adapt to environmental change. Furthermore, environmental changes are not constant in time, but fluctuate. Here, we investigate the effect of rapid, continuous and/or fluctuating temperature changes in the seed beetle Callosobruchus maculatus, using an evolution experiment followed by a split-brood experiment. In line with expectations, individuals responded in a plastic way and had an overall higher potential to respond to selection after a rapid change in the environment. After selection in an environment with increasing temperature, plasticity remained unchanged (or decreased) and environmental variation decreased, especially when fluctuations were added; these results were unexpected. As expected, the genetic variation decreased after fluctuating selection. Our results suggest that fluctuations in the environment have major impact on the response of a population to environmental change; in a highly variable environment with low predictability, a plastic response might not be beneficial and the response is genetically and environmentally canalized resulting in a low potential to respond to selection and low environmental sensitivity. Interestingly, we found greater variation for phenotypic plasticity after selection, suggesting that the potential for plasticity to evolve is facilitated after exposure to environmental fluctuations. Our study highlights that environmental fluctuations should be considered when investigating the response of a population to environmental change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available