4.7 Article

Baicalein, an active component of Scutellaria baicalensis, protects against lipopolysaccharide-induced acute lung injury in rats

Journal

JOURNAL OF ETHNOPHARMACOLOGY
Volume 153, Issue 1, Pages 197-206

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.jep.2014.02.010

Keywords

Baicalein; Lipopolysaccharide; Acute lung injury; Heme oxygenase-1; Inflammation

Funding

  1. National Science Council of Taiwan, Republic of China [NSC 972320-B-016-008-MY3]

Ask authors/readers for more resources

Ethnopharmacological relevance: Baicalein (BE), a phenolic flavonoid extracted mainly from the root of Scutellaria baicalensis Georgi, a Chinese herb, is traditionally used in oriental medicine. Several studies have demonstrated that BE exerts many beneficial effects including anti-inflammatory and antioxidant activities. However, its effect on acute lung injury (ALI) and the molecular mechanisms involved remain unclear and warrant further investigation. The aim of the study is to investigate whether BE improves lipopolysaccharide (LPS, intratracheally, i.t.)-induced ALI in rats, and further study the underlying mechanisms of its activity. Material and methods: Rats were administrated with LPS (5 mg/kg/body weight, i.t.) through a 24-gauge catheter to establish the ALI model. The effects of BE on the levels of pro-inflammatory cytokines, nitrite/nitrate in bronchoalveolar lavage fluid, and the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and nuclear factor-kappa B (NF-kappa B) activation as well as the histopathological changes were evaluated. Results: Results showed that BE (20 mg/kg, i.p.) treatment markedly attenuated LPS-induced lung edema, elevation of the levels of IL-1 beta, TNF-alpha, IL-6, CINC-3, and nitrite/nitrate in bronchoalveolar lavage fluid accompanied by a remarkable improvement of lung histopathological symptoms. The LPS-enhanced inflammatory cell infiltration and myeloperoxidase activity, O-2(-) formation and the expression of inducible nitric oxide synthase and nitrotyrosin in lungs were all attenuated by BE. Notably, BE could augment Nrf2/HO-1 cascade, but inhibited NF-B-k activation in LPS-instilled lungs that was strongly reversed by blocking HO-1 activity. Conclusion: This study is the first to demonstrate that BE protects against LPS-induced ALI in rats. The underlying mechanisms may include inhibition of NF-kappa B-mediated inflammatory responses and upregulation of Nrf2/HO-1 pathway, which ultimately alleviates the pathological symptoms of ALI. (C) 2014 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available