4.7 Article

Numerical analyses of the solid particle erosion in elbows for annular flow

Journal

OCEAN ENGINEERING
Volume 105, Issue -, Pages 186-195

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2015.06.024

Keywords

Solid particle erosion; Flow assurance; Elbow; Pipeline; Annular flow; Numerical analyses

Funding

  1. National Natural Science Foundation of China [51279129]

Ask authors/readers for more resources

Solid particle erosion in pipelines is a severe problem involved in hydrocarbon transportation and hence an important topic in flow assurance. A simplified CFD-based procedure is proposed to calculate the penetration rates in elbows for annular flow. This new method overcomes the disadvantages of current empirical or semi-empirical models. The procedure consists of three main sections: flow modeling, particle tracking, and penetration calculation. The k-epsilon model is employed to analyze the flow field in the core area of the pipe based on the assumption that the gas-liquid interface is regarded as an actual pipe wall. Then a Lagrangian method is adopted to track trajectories of the entrained droplets and sand particles in the core area, and the velocity decay of sand particles across the liquid film is calculated combined with the film thickness correlation. Based on the knowledge of the flow field and the particle motion, penetration rates are calculated by introducing the solid particle erosion equation. By comparing with experimental data available from the literature, the new method is proved to be reasonable in simplifying the simulation of annular flow field and shows good accuracy in erosion prediction. A better agreement between predicted erosion rates and experimental data can be made when applied to larger curvature radius elbows. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available