4.4 Article

Effects of airborne particulate matter on respiratory morbidity in asthmatic children

Journal

JOURNAL OF EPIDEMIOLOGY
Volume 18, Issue 3, Pages 97-110

Publisher

JAPAN EPIDEMIOLOGICAL ASSOC
DOI: 10.2188/jea.JE2007432

Keywords

particulate matter; asthma; peak expiratory flow rate; respiratory sounds

Ask authors/readers for more resources

Background: The effects of airborne particulate matter (PM) are a major human health concern. In this panel study, we evaluated the acute effects of exposure to PM on peak expiratory flow (PEF) and wheezing in children. Methods: Daily PEF and wheezing were examined in 19 asthmatic children who were hospitalized in a suburban city in Japan for approximately 5 months. The concentrations of PM less than 2.5 mu m in diameter (PM2.5) were monitored at a monitoring station proximal to the hospital. Moreover, PM2.5 concentrations inside and outside the hospital were measured using the dust monitor with a laser diode (PM2.5(LD)). The changes in PEF and wheezing associated with PM concentration were analyzed. Results: The changes in PEF in the morning and evening were significantly associated with increases in the average concentration of indoor PM2.5(LD) 24 h prior to measurement (-2.86 L/min [95% CI: -4.12, -1.61] and -3.59 L/min [95%CI: -4.99, -2.20] respectively, for 10-mu g/m(3) increases). The change in PEF was also significantly associated with outdoor PM2.5(LD) concentrations, but the changes were smaller than those observed for indoor PM2.5(LD). Changes in PEF and concentration of stationary-site PM2.5 were not associated. The prevalence of wheezing in the morning and evening were also significantly associated with indoor PM2.5(LD) concentrations (odds ratios = 1.014 [95%CI: 1.006, 1.023] and 1.025 [95%CI: 1.013, 1.038] respectively, for 10-mu g/m(3) increases). Wheezing in the evening was significantly associated with outdoor PM2.5(LD) concentration. The effects of indoor and outdoor PM2.5(LD) remained significant even after adjusting for ambient nitrogen dioxide concentrations. Conclusion: Indoor and outdoor PM2.5(LD) concentrations were associated with PEF and wheezing among asthmatic children. Indoor PM2.5(LD) had a more marked effect than outdoor PM2.5(LD) or stationary-site PM2.5.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available