4.2 Article

Efficient dechlorination of chlorinated solvent pollutants under UV irradiation by using the synthesized TiO2 nano-sheets in aqueous phase

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 26, Issue 5, Pages 1188-1194

Publisher

SCIENCE PRESS
DOI: 10.1016/S1001-0742(13)60541-0

Keywords

photo-degradation; TiO2; chlorinated solvent pollutants; nitrobenzene; UV illumination; groundwater remediation

Funding

  1. National Environmental Protection Public Welfare Science and Technology Research Program of China [201109013]
  2. National Natural Science Foundation of China [41373094, 51208199]
  3. Shanghai Natural Science Funds [12ZR1408000]
  4. China Postdoctoral Science Foundation [2013T60429]
  5. China Scholarship Council for PhD program at East China University of Science Technology

Ask authors/readers for more resources

Titanium dioxide (TiO2), which is the widely used photo-catalyst, has been synthesized by simple hydrothermal solution containing tetrabutyl titanate and hydrofluoric acid. The synthesized product has been applied to photo-degradation in aqueous phase of chlorinated solvents, namely tetrachloroethene (PCE), trichloroethene (TCE) and 1,1,1-trichloroethane (TCA). The photo-degradation results revealed that the degradation of these harmful chemicals was better in UV/synthesized TiO2 system compared to UV/commercial P25 system and UV only system. The photo-catalytic efficiency of the synthesized TiO2 was 1.4, 1.8 and 3.0 folds higher compared to the commercial P25 for TCA, TCE and PCE degradation, respectively. Moreover, using nitrobenzene (NB) as a probe of hydroxyl radical (center dot OH), the degradation rate was better over UV/synthesized TiO2, suggesting the high concentration of center dot OH generated in UV/synthesized TiO2 system. In addition, center dot OH concentration was confirmed by the strong peak displayed in EPR analysis over UV/synthesized TiO2 system. The characterization result using XRD and TEM showed that the synthesized TiO2 was in anatase form and consisted of well-defined sheet-shaped structures having a rectangular outline with a thickness of 4 nm, side length of 50 nm and width of 33 nm and a surface 90.3 m(2)/g. XPS analysis revealed that Ti-F bond was formed on the surface of the synthesized TiO2. The above results on both photocatalytic activity and the surface analysis demonstrated the good applicability of the synthesized TiO2 nano-sheets for the remediation of chlorinated solvent contaminated groundwater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available