4.2 Article

Photolysis of chlortetracycline in aqueous solution: Kinetics, toxicity and products

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 24, Issue 2, Pages 254-260

Publisher

SCIENCE PRESS
DOI: 10.1016/S1001-0742(11)60775-4

Keywords

chlortetracycline; direct photodegradation; phototoxicity; photoproducts

Funding

  1. National Natural Science Foundation of China [21007018, 51078161]
  2. Natural Science Foundation of Hubei Province [2010CDB01104]
  3. Research Fund for the Doctoral Program of Higher Education of China [20100142120004]
  4. 11th Five-year Plan of National Water Environmental Special Program of China [2008ZX07211-10-02]

Ask authors/readers for more resources

The aqueous photodegradation of the widely used antibiotic chlortetracycline (CTC) was investigated under simulated sunlight. The quantum yield of photodegradation increased from 3.3 x 10(-4) to 8.5 x 10(-3) within the pH range of 6.0 to 9.0. The presence of Ca2+, Fe3+, and NO3- enhanced the photodegradation of CTC, whereas Mg2+, Mn2+, and Zn2+ inhibited the degradation with the order Mn2+ > Zn2+ > Mg2+ at pH 7.3. The monovalent cations (Na+ and K+) had negligible effect on the photolysis of CTC. Fulvic acid (FA) decreased the photodegradation of CTC due to light screening effect. Hydrogen peroxide (H2O2) was formed concurrently with direct photodegradation of CTC. The generation rate of H2O2 increased from 0.027 to 0.086 mu mol/(L.min) when the pH ranged from 6.0 to 9.0. The CTC solution was about three-fold more toxic to the Photobacterium phosphoreum bacteria after irradiation, suggesting that the photoproducts and H2O2 formed in the CTC solution exhibited high risk on the bacteria. By LC-ESI(+)-MS, the photoproducts of CTC were identified. The direct photodegradation of CTC was involved in hydroxylation and N-demethyl/dedismethyl processes. The main photoproducts included the iso-CTC analog containing hydroxyl groups (m/z 511.4 and 495.4), and the N-demethyl/dedismethyl products of the photoproduct m/z 495.4 (m/z 481.3 and 467.4). In addition, the photochemical dechlorination of CTC led to tetracycline (m/z 445.5).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available