4.2 Article

Biofilm structure and its influence on clogging in drip irrigation emitters distributing reclaimed wastewater

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 21, Issue 6, Pages 834-841

Publisher

SCIENCE PRESS
DOI: 10.1016/S1001-0742(08)62349-9

Keywords

emitter clogging, drip irrigation; biofilm; microbial community; phospholipid fatty acid; reclaimed wastewater; scanning electron microscopy

Funding

  1. National Natural Science Foundation of China [50379053, 50609029, 50779068]

Ask authors/readers for more resources

Using reclaimed wastewater for crop irrigation is a practical alternative to discharge wastewater treatment plant effluents into surface waters. However, biofouling has been identified as a major contributor to emitter clogging in drip irrigation systems distributing reclaimed wastewater. Little is known about the biofilm structure and its influence on clogging in the drip emitter flow path. This study was first to investigate the microbial characteristics of mature biofilms present in the emitters and the effect of flow path structures on the biofilm microbial communities. The analysis of biofilm matrix structure using a scanning electron microscopy (SEM) revealed that particles in the matrix of the biofilm coupled extracellular polysaccharides (EPS) and formed sediment in the emitter flow path. Analysis of biofilm mass including protein, polysaccharide, and phospholipid fatty acids (PLFAs) showed that emitter flow path style influenced biofilm community structure and diversity. The correlations of biofilm biomass and discharge reduction after 360 h irrigation were computed and suggest that PFLAs provide the best correlation coefficient. Comparatively, the emitter with the unsymmetrical dentate structure and shorter flow path (Emitter C) had the best anti-clogging capability. By optimizing the dentate structure, the internal flow pattern within the flow path could be enhanced as an important method to control the biofilm within emitter flow path. This study established electron microscope techniques and biochemical microbial analysis methods that may provide a framework for future emitter biofilm studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available