4.2 Article

Aqueous and organic extracts of Trigonella foenum-graecum L. inhibit the mycelia growth of fungi

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 20, Issue 12, Pages 1453-1457

Publisher

SCIENCE PRESS
DOI: 10.1016/S1001-0742(08)62548-6

Keywords

antifungal potential; aqueous extracts; fungi; methanol fraction; minimum inhibitory concentration (MIC); Trigonella foenum-graecum L.

Ask authors/readers for more resources

Aqueous extracts from various plant parts of fenugreek (3%) (aerial parts: leaves and stems (LS), roots (R), ground seeds (GS) and not ground seeds (NGS)) and petroleum ether, ethyl acetate and methanolic fractions of the aerial parts were assayed to determine their antifungal potential against Botrytis cinerea, Fusarium graminearum, Alternaria sp., Pythium aphanidermatum, and Rhizoctinia solani. All fenugreek plant parts showed antifungal potential and the magnitude of their inhibitory effects was species and plant parts dependent. R extract was shown less toxic (30.38%), whereas NGS extract expressed the strongest inhibition, with an average of 71.44%, followed by GS (58.56%) and LS (57.1 %). Screening indicated that P aphanidermatum was the most resistant species, with an average inhibition of 34.5%. F graminearum, Altenaria sp. and R. solani were the most sensitive species, and were similarly inhibited (63.5%). The stability test indicated that the aqueous extracts of all plant parts lost approximately 50% of their relative activity after one month of storage at 4 degrees C, whilst they lost 60%-90% of their activity when stored at ambient temperature for one month. The antifungal activity resided mainly in the methanol fraction and the minimum inhibitory concentration (MIC) of methanol fraction witch caused total inhibition of R. solani and Alternaria sp. was 60 mu g/ml. Results of current study suggested that the constituents of Trigonella foenum-graecum have potential against harmful pathogenic fungi. Therefore, fenugreek could be an important source of biologically active compounds useful for developing better new antifungal drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available