4.2 Article

Anaerobic BTEX degradation in soil bioaugmented with mixed consortia under nitrate reducing conditions

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 20, Issue 5, Pages 585-592

Publisher

SCIENCE PRESS
DOI: 10.1016/S1001-0742(08)62098-7

Keywords

benzene; toluene; ethylbenzene; xylene; BTEX; anaerobic biodegradation; nitrate reduction; soil; bioaugmentation; cometabolism

Ask authors/readers for more resources

Different concentrations of BTEX, including benzene, toluene, ethylbenzene, and three xylene isomers, were added into soil samples to investigate the anaerobic degradation potential by the augmented BTEX-adapted consortia under nitrate reducing conditions. All the BTEX substrates could be anaerobically biodegraded to non-detectable levels within 70 d when the initial concentrations were below 100 mg/kg in soil. Toluene was degraded faster than any other BTEX compounds, and the high-to-low order of degradation rates were toluene > ethylbenzene > m-xylene > o-xylene > benzene > p-xylene. Nitrite was accumulated with nitrate reduction, but the accumulation of nitrite had no inhibitory effect on the degradation of BTEX throughout the whole incubation. Indigenous bacteria in the soil could enhance the BTEX biodegradation ability of the enriched mixed bacteria. When the six BTEX compounds were simultaneously present in soil, there was no apparent inhibitory effect on their degradation with lower initial concentrations. Alternatively, benzene, o-xylene, and p-xylene degradation were inhibited with higher initial concentrations of 300 mg/kg. Higher BTEX biodegradation rates, were observed in soil samples with the addition of sodium acetate compared to the presence of a single BTEX substrate, and the hypothesis of primary-substrate stimulation or cometabolic enhancement of BTEX biodegradation seems likely.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available