4.2 Article

Oil refinery wastewater treatment using physicochemical, Fenton and Photo-Fenton oxidation processes

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10934529.2012.646136

Keywords

Oil refinery wastewater; hydrocarbons degradation; photocatalysis; Fenton's reagent; Chemical oxygen demand (COD)

Ask authors/readers for more resources

The objective of this study was to investigate the application of advanced oxidation processes (AOPs) to the treatment of wastewaters contaminated with hydrocarbon oil. Three different oil-contaminated wastewaters were examined and compared: (i) a 'real' hydrocarbon wastewater collected from an oil refinery (Conoco-Phillips Whitegate refinery, County Cork, Ireland); (ii) a 'real' hydrocarbon wastewater collected from a car-wash facility located at a petroleum filling station; and (iii) a 'synthetic' hydrocarbon wastewater generated by emulsifying diesel oil and water. The AOPs investigated were Fe2+/H2O2 (Fenton's reagent), Fe2+/H2O2/UV (Photo-Fenton's reagent) which may be used as an alternative to, or in conjunction with, conventional treatment techniques. Laboratory-scale batch and continuous-flow experiments were undertaken. The photo-Fenton parametric concentrations to maximize COD removal were optimized: pH = 3, H2O2 = 400 mg/L, and Fe2+ = 40 mg/L. In the case of the oil-refinery wastewater, photo-Fenton treatment achieved approximately 50% COD removal and, when preceded by physicochemical treatment, the percentage removal increased to approximately 75%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available