4.0 Article

Investigation of the matrix effects on a HPLC-ESI-MS/MS method and application for monitoring triazine, phenylurea and chloroacetanilide concentrations in fresh and estuarine waters

Journal

JOURNAL OF ENVIRONMENTAL MONITORING
Volume 11, Issue 1, Pages 108-115

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b805160g

Keywords

-

Funding

  1. CNRS

Ask authors/readers for more resources

In this work, the effects of matrix interferences on the analytical performance of a new multiresidue method based on off-line solid phase extraction followed by reversed-phase liquid chromatographic separation and electrospray triple quadrupole mass spectrometric detection were investigated. This technique allows the simultaneous determination of 30 triazines, phenylureas and chloroacetanilides, extracted from freshwaters, in 40 minutes. Quantifications were performed with the use of appropriate internal standards (i.e. atrazine D5, diuron D6 and metolachlor D6). The limits of quantification were from 1 to 32 ng L-1 for the triazines, from 5 to 59 ng L-1 for the phenylureas and from 13 to 54 ng L-1 for the chloroacetanilides. The matrix effects were studied by spiking various waters (i.e. tap, river, pond and sea waters) with the chemicals of interest. The results showed that the samples with the highest conductivity (i.e. seawater) and the most abundant dissolved organic matter content (i.e. pond water) exhibited important matrix effects with signal suppressions and high imprecision, respectively. These matrix effects were strongly minimized by performing appropriate internal standardizations. Afterward, this analytical method was applied for analyzing environmental samples from either river or estuarine waters and for monitoring herbicide input in a freshwater-seawater interface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available