4.0 Article

Metal remediation from partially composted distillery sludge using composting earthworm Eisenia fetida

Journal

JOURNAL OF ENVIRONMENTAL MONITORING
Volume 10, Issue 9, Pages 1099-1106

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b807908k

Keywords

-

Ask authors/readers for more resources

Distillery sludge, a sugar industry byproduct, has been recommended widely as a potential soil conditioner, but high concentrations of metals limit its continuous use for field crops. In this study we tested the feasibility of earthworm Eisenia fetida (Savigny) in removing metals (Fe, Cu, Zn, Pb) from sludge through vermitechnology. The transfer of metals during the vermicomposting process was also estimate in terms of total metal contents in vermicomposted sludge and earthworm tissues. The sludge processed by worms showed a significant reduction in concentration of metals: Zn (20.5-43.8%), Fe (23.6-34.0%), Mn (18.0-45.7%) and Cu (29.0-58.1%), at the end. The metal reduction in sludge was directly related to the bioaccumulation of metals in the tissues of composting earthworms. The inoculated earthworms showed a considerable level (dry wt basis) of Zn (103.7-143.3 mg kg(-1)), Fe (87.2-146.5 mg kg(-1)), Mn (83.7-138.6 mg kg(-1)) and Cu (16.8-25.5 mg kg(-1)) in their tissues. A higher range of bioconcentration factors (BCFs) for different metals studied further suggest the candidature of earthworm to be used effectively for removal of metals form industrial sludges. The obtained vermicomposts form different vermireactors were rich in nutrients. The feasibility of earthworms to mitigate the metal toxicity and to enhance the nutrient profile in sludge might be useful in sustainable land restoration practices at low-input basis. The ranges of metals in end product were within the standards recommended by different agencies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available