4.7 Article

Efficient multistep arsenate removal onto magnetite modified fly ash

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 224, Issue -, Pages 263-276

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2018.07.051

Keywords

Adsorption; Arsenate; fly ash; Magnetite

Funding

  1. Ministry of Education, Science and Technological Development of the Republic of Serbia [TR34009, III45019, OI171001]

Ask authors/readers for more resources

The modification of the fly ash (FA) by magnetite (M) was performed to obtain FAM adsorbent with improved adsorption efficiency for arsenate removal from water. The novel low cost adsorbents are characterized by liquid nitrogen porosimetry (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), Mossbauer spectroscopy (MB) and Fourier transform infrared (FTIR) spectroscopy. The optimal conditions and key factors influencing the adsorbent synthesis are assessed using the response surface method (RSM). The adsorption experiment was carried out in a batch system by varying the contact time, temperature, pH, and mass of the adsorbent. The adsorption capacity of the FAM adsorbent for As(V), calculated by Langmuir model, was 19.14 mg g(-1). The thermodynamic parameters showed spontaneity of adsorption with low endothermic character. The kinetic data followed the pseudo-second-order kinetic model (PSO), and Weber-Morris model indicated intra-particle diffusion as rate limiting step. Alternative to low desorption capability of the FAM was found by five consecutive adsorption/magnetite precipitation processes which gave exhausted layered adsorbent with 65.78 mg g(-1) capacity. This research also has shed light on the mechanism of As(V)-ion adsorption, presenting a promising solution for the valorization of a widely abundant industrial waste.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available