4.3 Article

Improving Tilting-Pad Journal Bearing Predictions-Part II: Comparison of Measured and Predicted Rotor-Pad Transfer Functions for a Rocker-Pivot Tilting-Pad Journal Bearing

Publisher

ASME
DOI: 10.1115/1.4007368

Keywords

-

Funding

  1. Turbomachinery Research Consortium (TRC)

Ask authors/readers for more resources

As described in Part I (Wilkes et al., 2012, Improving Tilting-Pad Journal Bearing Predictions-Part I: Model Development and Impact of Rotor Excited Versus Bearing Excited Impedance Coefficients, ASME J. Eng. Gas Turb. Power, 135(1), p. 012503), most analytical models for tilting-pad journal bearing (TPJBs) are based on the assumption that explicit dependence on pad motion can be eliminated by assuming harmonic rotor motion such that the amplitude and phase of pad motions resulting from radial and transverse rotor motions are predicted by rotor-pad transfer functions. In short, these transfer functions specify the amplitude and phase of pad motion (angular, radial, translational, etc.) in response to an input rotor motion. Direct measurements of pad motion during test excitation were recorded to produce measured transfer functions between rotor and pad motion, and a comparison between these measurements and predictions is given. Motion probes were added to the loaded pad (having the static load vector directed through its pivot) of a 5-pad TPJB to obtain accurate measurement of pad radial and tangential motion, as well as tilt, yaw, and pitch. Strain gauges were attached to the side of the loaded pad to measure static and dynamic bending strains, which were then used to determine static and dynamic changes in pad curvature (pad clearance). [DOI: 10.1115/1.4007368]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available