4.3 Article

Coupled Fluid-Structure Transient Thermal Analysis of a Gas Turbine Internal Air System With Multiple Cavities

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.4007060

Keywords

-

Funding

  1. Rolls-Royce plc
  2. Engineering and Physical Sciences Research Council

Ask authors/readers for more resources

This paper presents the transient aerothermal analysis of a gas turbine internal air system through an engine flight cycle featuring multiple fluid cavities that surround a HP turbine disk and the adjacent structures. Strongly coupled fluid-structure thermal interaction problems require significant computational effort to resolve nonlinearities on the interface for each time step. Simulation times may grow impractical if multiple fluid domains are included in the analysis. A new strategy is employed to decrease the cost of coupled aerothermal analysis. Significantly lower fluid domain solver invocation counts are demonstrated as opposed to the traditional coupling approach formulated on the estimates of heat transfer coefficient. Numerical results are presented using 2D finite element conduction model combined with 2D flow calculation in five separate cavities interconnected through the inlet and outlet boundaries. The coupled solutions are discussed and validated against a nominal stand-alone model. Relative performance of both coupling techniques is evaluated. [DOI: 10.1115/1.4007060]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available