4.3 Article

spray and combustion characteristics of biodiesel/diesel blended fuel in a direct injection common-rail diesel engine

Publisher

ASME
DOI: 10.1115/1.2835354

Keywords

biodiesel; injection rate characteristics; spray characteristics; phase Doppler particle analyzer (PDPA); Sauter mean diameter (SMD); combustion characteristics; rate of heat release (ROHR); exhaust emissions

Funding

  1. Korea Institute of Industrial Technology(KITECH) [06-최-35] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  2. National Research Foundation of Korea [과C6A1809] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The aim of this work is to investigate the effect of the blending ratio and pilot injection on the spray and combustion characteristics of biodiesel fuel and compare these factors with those of diesel fuel in a direct injection common-rail diesel engine. In order to study the factors influencing the spray and combustion characteristics of biodiesel fuel, experiments involving exhaust emissions and engine performance were conducted at various biodiesel blending ratios and injection conditions for engine operating conditions. The macroscopic and microscopic spray characteristics of biodiesel fuel, such as injection rate, split injection effect, spray tip penetration, droplet diameter and axial velocity distribution, were compared with the results from conventional diesel fuel. For biodiesel blended fuel, it was revealed that a higher injection pressure is needed to achieve the same injection rate at a higher blending ratio. The spray tip penetration of biodiesel fuel was similar to that of diesel. The atomization characteristics of biodiesel show that it has higher Sauter mean diameter and lower spray velocity than conventional diesel fuel due to high viscosity and surface tension. The peak combustion pressures of diesel and blending fuel increased with advanced injection timing and the combustion pressure of biodiesel fuel is higher than that of diesel fuel. As the pilot injection timing is retarded to 15 deg of BTDC that is closed by the top dead center the dissimilarities of diesel and blending fuels combustion pressure are reduced. It was found that the pilot injection enhanced the deteriorated spray and combustion characteristics of biodiesel fuel caused by different physical properties of the fuel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available