4.5 Article

Antibacterial Efficacy of Photosensitizer Functionalized Biopolymeric Nanoparticles in the Presence of Tissue Inhibitors in Root Canal

Journal

JOURNAL OF ENDODONTICS
Volume 40, Issue 4, Pages 566-570

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.joen.2013.09.013

Keywords

Antibacterial; chitosan; nanoparticles; tissue inhibitors

Funding

  1. University of Toronto Start-up fund

Ask authors/readers for more resources

Introduction: Application of antibacterial nanoparticles to improve root canal disinfection has received strong interest recently. The current study aims to assess the antibacterial effect of a novel photosensitizer (rose bengal functionalized chitosan nanoparticles [CSRBnp]) to eliminate bacteria in the presence of various root canal constituents that are known to inhibit the antibacterial efficacy of root canal disinfectants. Methods: The synthesized CSRBnp were evaluated for size, charge, and singlet oxygen release. The antibacterial effect of CSRBnp was tested on planktonic Enterococcus faecalis with or without pretreatment by using different inhibiting agents such as dentin, dentin-matrix, pulp tissue, bacterial lipopolysaccharides, and bovine serum albumin (BSA). Bacterial survival was assessed in a time-dependent manner. The antibacterial effects after photodynamic activation on CSRBnp, a cationic photosensitizer (methylene blue), and an anionic photosensitizer (rose bengal [RB]) in the presence of inhibitors were also evaluated. Results: CSRBnp were 60 20 nm in size and showed reduced rate of singlet oxygen release as compared with methylene blue and RB. Pulp and BSA inhibited the antibacterial effect of CSRBnp (without photoactivation) significantly (P <.05) even after 24 hours of interaction. In case of photodynamic therapy, the pulp and BSA significantly inhibited the antibacterial activity of all 3 photosensitizers. CSRBnp showed residual effect and completely eliminated the bacteria after 24 hours of interaction after photodynamic therapy. Conclusions: The inherent antibacterial activity of polycationic chitosan nanoparticles and the singlet oxygen released after photoactivation of RB synergistically provided CSRBnp the potential to achieve significant antibacterial efficacy even in the presence of tissue inhibitors within root canals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available