4.1 Article

Successive Softening and Cyclic Damage in Viscoplastic Material

Journal

JOURNAL OF ELECTRONIC PACKAGING
Volume 132, Issue 4, Pages -

Publisher

ASME
DOI: 10.1115/1.4002722

Keywords

-

Ask authors/readers for more resources

A successive initiation finite element modeling approach is presented in which an empirical continuum damage model, energy partitioning damage evolution model, developed by the author is used to update state of damage and constitutive properties of the material under thermomechanical cyclic loading and accumulate damage in the elements. Plastic and viscoplastic damages are evaluated based on the plastic and viscoplastic work densities obtained through finite element. Constitutive properties are updated elementwise at each step of the process based on the state of damage in each element. The elements that have reached the damage threshold are removed from the structure to initiate and propagate fatigue crack. This successive initiation approach is used to model crack initiation and propagation in Pb-free solder material under thermomechanical loading. A case study is presented, damage propagation path and pattern are compared with typical experimental results, and the accuracy of the model was verified. [DOI: 10.1115/1.4002722]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available