4.5 Article

Effect of Nano-Ce-Doped TiO2 on AC Conductivity and DC Conductivity Modeling Studies of Poly (n-Butyl Methacrylate)

Journal

JOURNAL OF ELECTRONIC MATERIALS
Volume 47, Issue 11, Pages 6484-6493

Publisher

SPRINGER
DOI: 10.1007/s11664-018-6556-3

Keywords

Poly (n-butyl methacrylate); temperature-dependent AC conductivity; DC conductivity; conductivity modeling

Ask authors/readers for more resources

Among the unique properties of polymer nanocomposites, electrical conductivity deserves a prominent place due to their wide applications in conducting adhesive, electromagnetic shielding and sensors. The present work focuses on the effect of cerium-doped titanium dioxide (Ce-TiO2) nanoparticles on the conductivity studies of poly (n-butyl methacrylate), or PBMA, nanocomposites at different temperatures. The frequency-dependent alternating current (AC) electrical conductivity of PBMA/Ce-TiO2 nanocomposites has been found to increase with increase in temperature and the concentration of Ce-TiO2 nanoparticles. The activation energy calculated from the AC electrical conductivity has been found to decrease with frequency and increasing temperatures. The frequency exponent factor also showed a decrease with frequency, indicating the hopping conduction in the nanocomposites. The maximum AC conductivity has been observed for the composites with 7wt.% sample. The direct current (DC) conductivity of PBMA/Ce-TiO2 composites was also enhanced with the addition of Ce-TiO2 nanoparticles. Experimental and theoretical investigations based on Scarisbrick, Bueche, McCullough and Mamunya modeling were undertaken to understand the observed DC conductivity differences induced by the addition of Ce-doped TiO2 nanoparticles to PBMA matrix. The experimental conductivity showed good agreement with the theoretical conductivity observed using the Mamunya model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available