4.5 Article

Levers for Thermoelectric Properties in Titania-Based Ceramics

Journal

JOURNAL OF ELECTRONIC MATERIALS
Volume 41, Issue 6, Pages 1636-1647

Publisher

SPRINGER
DOI: 10.1007/s11664-012-2019-4

Keywords

Titania; thermoelectrics; Magneli phases

Ask authors/readers for more resources

While the beneficial impact of nanostructural engineering on thermoelectric performance has been demonstrated for many semiconducting materials (SiGe, skutterudites, PbTe2, etc.), no significant advantages have been reported for oxide nanomaterials. In this study, titania is used as a model material to compare the impact of grain size, doping and substitution, second-phase nanodispersion, and crystallographic defects on the electronic and thermal properties. It is shown that the lattice thermal conductivity can be most efficiently reduced by high densities of crystallographic planar defects in the Magn,li phases, while modification of grain size or introduction of second phases on length scales of 20 nm to 100 nm introduces only minor improvement. For the electronic properties, donor dopants such as niobium provide improvement of the power factor, but are not able to compete with the enhanced carrier concentration that is reached through oxygen vacancy introduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available