4.5 Article

A Bondable Metallization Stack That Prevents Diffusion of Oxygen and Gold into Monolithically Integrated Circuits Operating Above 500A°C

Journal

JOURNAL OF ELECTRONIC MATERIALS
Volume 41, Issue 5, Pages 915-920

Publisher

SPRINGER
DOI: 10.1007/s11664-011-1792-9

Keywords

Iridium; wire bond; high temperature

Funding

  1. NASA

Ask authors/readers for more resources

We investigate use of tantalum silicide (TaSi2, 400 nm)/platinum (Pt, 200 nm)/iridium (Ir, 200 nm)/platinum (Pt, 200 nm) as both a bond metal and a diffusion barrier to prevent oxygen (from air) and gold (from the wire bond) from infiltrating silicon carbide (SiC) monolithically integrated circuits operating above 500A degrees C for over 1000 h in air. The TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. It can be used directly on ohmic contact metals, dielectric insulating layers, or interconnect metal, because it adheres to silicon dioxide (SiO2), silicon nitride (Si3N4), and titanium (Ti). In this study, we investigate use of the new metallization of TaSi2/Pt/Ir/Pt (in deposition order) with TaSi2 resting on top of a Ti-SiC contact annealed at 600A degrees C for 30 min in nitrogen, which allows the TaSi2 layer to react with the bottom platinum layer to form the Pt2Si diffusion barrier at the Pt-Ir interface. Since the iridium layer does not readily form a silicide, it prevents the silicon from migrating into the topmost platinum layer during further annealing or high-temperature integrated circuit operation. This leaves a pure platinum layer at the surface, ideal for gold wire bonding. We discuss the characteristics of the TaSi2/Pt/Ir/Pt metallization at 500A degrees C after 10 h, 100 h, and 1000 h in air ambient and N-2 ambient. Auger electron spectroscopy (AES) depth profiles of the metallization and field-emission scanning electron microscopy-focused ion beam (FESEM-FIB) cross-sections are also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available