4.0 Article

Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM

Journal

JOURNAL OF ELECTRON MICROSCOPY
Volume 58, Issue 3, Pages 157-165

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jmicro/dfn029

Keywords

depth sectioning; scanning transmission electron microscope; aberration-corrected STEM; scanning confocal electron microscope

Categories

Funding

  1. Semiconductor Research Corporation

Ask authors/readers for more resources

The short depth of focus of aberration-corrected scanning transmission electron microscopes (STEMs) could potentially enable 3D reconstruction of nanomaterials through acquisition of a through-focal series. However, the contrast transfer function of annular dark-field (ADF)-STEM depth sectioning has a missing-cone problem similar to that of tilt-series tomography. The elongation as a function of the probe-forming angle is found to be root 3/2 1/alpha max. For existing aberration-corrected STEMs operated at optimal imaging conditions, the elongation factor for depth sectioning is larger than 30. This large elongation factor results in highly distorted shapes of 3D objects and unexpected artifacts due to the loss of information. Depth-sectioning experiments using a 33-mrad 100 keV C-5-corrected aberration-corrected STEM demonstrate the elongation effect and the missing-cone problem in real and reciprocal space. The performance limits of different S/TEM-based imaging modes are compared. There is a missing cone of information for bright-field S/TEM, ADF-STEM, hollow-cone ADF-STEM and coherent scanning confocal electron microscopy (SCEM). Only incoherent SCEM fills the missing cone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available