4.7 Article

Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes

Journal

JOURNAL OF ELECTROANALYTICAL CHEMISTRY
Volume 633, Issue 1, Pages 246-252

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jelechem.2009.06.005

Keywords

All-solid-state ion-selective electrode; Potassium ion sensor; Conducting polymers; PEDOT; Multi-walled carbon nanotubes

Funding

  1. Abo Akademi University Foundation

Ask authors/readers for more resources

Negatively charged multi-walled carbon nanotubes (MWCNTs) were used as dopants in the electrochemical synthesis of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). The resulting electroactive film, PEDOT(CNT), was used as ion-to-electron transducer (solid contact) in potassium ion-selective electrodes (K+-ISEs) based on plasticized PVC membrane containing valinomycin as neutral ionophore. Potentiometric measurements were carried out to study the analytical performance of solid-contact K+-ISEs, the influence of dissolved O-2 and CO2 on the potential of the electrodes, and the formation of the interfacial aqueous film. The prepared electrodes were also characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronopotentiometry. The experimental results showed that PEDOT(CNT) has the capability to function as solid contact in fabrication of K+-ISEs. These electrodes, based on PEDOT(CNT) as ion-to-electron transducer, showed high sensitivity and selectivity to K+ ion which can be related to the plasticized PVC-based ion-selective membrane containing valinomycin. The stability of the electrode potential, however, was found to depend on the conducting substrate used for deposition of the PEDOT(CNT) film. Results from the CV and EIS revealed that the PEDOT(CNT) contact exhibits high redox capacitance that is favorable for a solid contact. (C) 2009 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available