4.4 Article

Combined Mode Conduction and Radiation Heat Transfer in a Porous Medium and Estimation of the Optical Properties of the Porous Matrix

Journal

NUMERICAL HEAT TRANSFER PART A-APPLICATIONS
Volume 67, Issue 10, Pages 1119-1135

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10407782.2014.955358

Keywords

-

Ask authors/readers for more resources

This article deals with the analysis of combined mode conduction and radiation heat transfer in a porous medium, and simultaneous estimation of the optical properties of the porous matrix. Simultaneous solution of the gas- and solid-phase energy equations encompasses local thermal nonequilibrium, while the convective heat exchange term couples the gas- and the solid-phase energy equations. A localized uniform volumetric heat generation zone is the source of heat transfer in the porous matrix. With volumetric radiative information needed in the solid-phase energy equation computed using the discrete transfer method, the solid- and gas-phase energy equations are simultaneously solved using the finite difference method. For a given set of boundary conditions and operating parameters, the computed temperature distribution serves as the exact temperature profile necessary in the estimation of parameters. In the estimation of parameters using inverse analysis, the objective function is minimized using the genetic algorithm. Effects of measurement error, number of generations, population size, crossover probability, and mutation probability are studied in regard to the accuracy of results and the computational time required. Reasonably accurate estimations of extinction coefficient, scattering albedo, and emissivity of the porous matrix are obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available