4.4 Article

Dahl Model-Based Hysteresis Compensation and Precise Positioning Control of an XY Parallel Micromanipulator With Piezoelectric Actuation

Publisher

ASME
DOI: 10.1115/1.4001712

Keywords

feedback; feedforward; hysteresis; micromanipulators; particle swarm optimisation; piezoelectric actuators; position control; three-term control

Funding

  1. University of Macau [UL016/08-Y2/EME/LYM01/FST]
  2. Macao Science and Technology Development Fund [016/2008/A1]

Ask authors/readers for more resources

This paper presents a new control scheme for the hysteresis compensation and precise positioning of a piezoelectrically actuated micromanipulator. The scheme employs an inverse Dahl model-based feedforward in combination with a repetitive proportional-integral-derivative feedback control algorithm along with an antiwindup strategy. The dynamic model of the system with Dahl hysteresis is established and identified through particle swarm optimization approach. The necessity of using global optimization and how to choose the model parameters to be optimized are addressed as well. The effectiveness of the proposed controller is demonstrated by several experimental studies on an XY parallel micromanipulator. Experimental results reveal that both antiwindup and repetitive control strategies can improve the positioning accuracy of the system, and a well performance of the proposed scheme for both one-dimensional tracking and two-dimensional contouring tasks of the micromanipulator is achieved. Moreover, due to a simple structure, the proposed methodology can be easily generalized to other micro- or nanomanipulators with piezoelectric actuation as well. [DOI: 10.1115/1.4001712]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available