4.5 Article

Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer

Journal

JOURNAL OF DRUG TARGETING
Volume 23, Issue 2, Pages 159-169

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/1061186X.2014.965717

Keywords

Anticancer; glycery monostearate; oxidative stress; pharmacodynamics; topical

Ask authors/readers for more resources

Role of reactive oxygen species (ROS) in skin carcinogenesis is well documented. Natural molecules, like sesamol, with marked antioxidant potential can be useful in combating skin cancers. In vitro antiproliferative (using MTT assay) and DNA fragmentation studies in HL 60 cell lines, confirmed the apoptotic nature of sesamol. However, it showed a significant flux across the mice skin upon topical application, such that its local availability in skin is limited. Former is attributed mainly to its properties like small size, low molecular weight (138.28), and a sufficient lipid and water solubility (log P 1.29; solubility 38.8 mg/ml). To achieve its maximum epicutaneous delivery, packaging it into a suitable carrier system is thus indicated. Sesamol-loaded solid lipid nanoparticles (S-SLN) were thus prepared with particle size of 127.9 nm (PI: 0.256) and entrapment efficiency of 88.21%. Topical application of S-SLN in a cream base indicated significant retention in the skin with minimal flux across skin as confirmed by the in-vivo skin retention and ex-vivo skin permeation studies. In vivo anticancer studies performed on TPA-induced and benzo(a) pyrene initiated tumour production (ROS mediated) in mouse epidermis showed the normalization (in histology studies) of skin cancers post their induction, upon treatment with S-SLN.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available