4.8 Article

A fungicide-responsive kinase as a tool for synthetic cell fate regulation

Journal

NUCLEIC ACIDS RESEARCH
Volume 43, Issue 14, Pages 7162-7170

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkv678

Keywords

-

Funding

  1. Swedish Research Council
  2. EU [043310, 201142]
  3. Olle Engkvist Byggmastare Foundation

Ask authors/readers for more resources

Engineered biological systems that precisely execute defined tasks have major potential for medicine and biotechnology. For instance, gene-or cell-based therapies targeting pathogenic cells may replace time-and resource-intensive drug development. Engineering signal transduction systems is a promising, yet presently underexplored approach. Here, we exploit a fungicide-responsive heterologous histidine kinase for pathway engineering and synthetic cell fate regulation in the budding yeast Saccharomyces cerevisiae. Rewiring the osmoregulatory Hog1 MAPK signalling system generates yeast cells programmed to execute three different tasks. First, a synthetic negative feedback loop implemented by employing the fungicide-responsive kinase and a fungicide-resistant derivative reshapes the Hog1 activation profile, demonstrating how signalling dynamics can be engineered. Second, combinatorial integration of different genetic parts including the histidine kinases, a pathway activator and chemically regulated promoters enables control of yeast growth and/or gene expression in a two-input Boolean logic manner. Finally, we implemented a genetic 'suicide attack' system, in which engineered cells eliminate target cells and themselves in a specific and controllable manner. Taken together, fungicide-responsive kinases can be applied in different constellations to engineer signalling behaviour. Sensitizing engineered cells to existing chemicals may be generally useful for future medical and biotechnological applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available