4.8 Article

GEN1 promotes Holliday junction resolution by a coordinated nick and counter-nick mechanism

Journal

NUCLEIC ACIDS RESEARCH
Volume 43, Issue 22, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkv1207

Keywords

-

Funding

  1. Cancer Research UK
  2. Francis Crick Institute (Cancer Research UK)
  3. Francis Crick Institute (Medical Research Council)
  4. Francis Crick Institute (Wellcome Trust)
  5. European Research Council
  6. Louis-Jeantet Foundation
  7. Francis Crick Institute

Ask authors/readers for more resources

Holliday junctions (HJs) that physically link sister chromatids or homologous chromosomes are formed as intermediates during DNA repair by homologous recombination. Persistent recombination intermediates are acted upon by structure-selective endonucleases that are required for proper chromosome segregation at mitosis. Here, we have purified full-length human GEN1 protein and show that it promotes Holliday junction resolution by a mechanism that is analogous to that exhibited by the prototypic HJ resolvase E. coli RuvC. We find that GEN1 cleaves HJs by a nick and counter-nick mechanism involving dual co-ordinated incisions that lead to the formation of ligatable nicked duplex products. As observed with RuvC, cleavage of the first strand is rate limiting, while second strand cleavage is rapid. In contrast to RuvC, however, GEN1 is largely monomeric in solution, but dimerizes on the HJ. Using HJs containing non-cleavable phosphorothioate-containing linkages in one strand, we show that the two incisions can be uncoupled and that the first nick occurs upon GEN1 dimerization at the junction. These results indicate that the mechanism of HJ resolution is largely conserved from bacteria to man, despite a lack of sequence homology between the resolvases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available