4.8 Article

RPA70 depletion induces hSSB1/2-INTS3 complex to initiate ATR signaling

Journal

NUCLEIC ACIDS RESEARCH
Volume 43, Issue 10, Pages 4962-4974

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkv369

Keywords

-

Funding

  1. Science & Engineering Research Board
  2. Department of Biotechnology
  3. DRDO, Government of India
  4. National Institute of Immunology

Ask authors/readers for more resources

The primary eukaryotic single-stranded DNA-binding protein, Replication protein A (RPA), binds to single-stranded DNA at the sites of DNA damage and recruits the apical checkpoint kinase, ATR via its partner protein, ATRIP. It has been demonstrated that absence of RPA incapacitates the ATR-mediated checkpoint response. We report that in the absence of RPA, human single-stranded DNA-binding protein 1 (hSSB1) and its partner protein INTS3 form sub-nuclear foci, associate with the ATR-ATRIP complex and recruit it to the sites of genomic stress. The ATRIP foci formed after RPA depletion are abrogated in the absence of INTS3, establishing that hSSB-INTS3 complex recruits the ATR-ATRIP checkpoint complex to the sites of genomic stress. Depletion of homologs hSSB1/2 and INTS3 in RPA-deficient cells attenuates Chk1 phosphorylation, indicating that the cells are debilitated in responding to stress. We have identified that TopBP1 and the Rad9-Rad1-Hus1 complex are essential for the alternate mode of ATR activation. In summation, we report that the single-stranded DNA-binding protein complex, hSSB1/2-INTS3 can recruit the checkpoint complex to initiate ATR signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available